3.2091 \(\int (d+e x)^m (a d e+(c d^2+a e^2) x+c d e x^2)^p \, dx\)

Optimal. Leaf size=100 \[ -\frac {(d+e x)^{m+1} (a e+c d x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^p \, _2F_1\left (1,m+2 p+2;m+p+2;\frac {c d (d+e x)}{c d^2-a e^2}\right )}{(m+p+1) \left (c d^2-a e^2\right )} \]

[Out]

-(c*d*x+a*e)*(e*x+d)^(1+m)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^p*hypergeom([1, 2+m+2*p],[2+m+p],c*d*(e*x+d)/(-a*
e^2+c*d^2))/(-a*e^2+c*d^2)/(1+m+p)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 123, normalized size of antiderivative = 1.23, number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {679, 677, 70, 69} \[ \frac {(d+e x)^m (a e+c d x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^p \left (\frac {c d (d+e x)}{c d^2-a e^2}\right )^{-m-p} \, _2F_1\left (-m-p,p+1;p+2;-\frac {e (a e+c d x)}{c d^2-a e^2}\right )}{c d (p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^m*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^p,x]

[Out]

((a*e + c*d*x)*(d + e*x)^m*((c*d*(d + e*x))/(c*d^2 - a*e^2))^(-m - p)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^
p*Hypergeometric2F1[-m - p, 1 + p, 2 + p, -((e*(a*e + c*d*x))/(c*d^2 - a*e^2))])/(c*d*(1 + p))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*((b*(c + d*x))/(b*c - a*d))^FracPart[n]), Int[(a + b*x)^m*Simp[(b*c)/(b*c - a*d) + (b*d*x)/(b*c -
 a*d), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 677

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(d^m*(a + b*x + c*x^2
)^FracPart[p])/((1 + (e*x)/d)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(1 + (e*x)/d)^(m + p)*(a/d + (c*x)
/e)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Int
egerQ[p] && (IntegerQ[m] || GtQ[d, 0]) &&  !(IGtQ[m, 0] && (IntegerQ[3*p] || IntegerQ[4*p]))

Rule 679

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(d^IntPart[m]*(d + e*
x)^FracPart[m])/(1 + (e*x)/d)^FracPart[m], Int[(1 + (e*x)/d)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c,
d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] || GtQ
[d, 0])

Rubi steps

\begin {align*} \int (d+e x)^m \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p \, dx &=\left ((d+e x)^m \left (1+\frac {e x}{d}\right )^{-m}\right ) \int \left (1+\frac {e x}{d}\right )^m \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p \, dx\\ &=\left (\left (a d e+c d^2 x\right )^{-p} (d+e x)^m \left (1+\frac {e x}{d}\right )^{-m-p} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p\right ) \int \left (a d e+c d^2 x\right )^p \left (1+\frac {e x}{d}\right )^{m+p} \, dx\\ &=\left (\left (a d e+c d^2 x\right )^{-p} (d+e x)^m \left (\frac {c d^2 \left (1+\frac {e x}{d}\right )}{c d^2-a e^2}\right )^{-m-p} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p\right ) \int \left (a d e+c d^2 x\right )^p \left (\frac {c d^2}{c d^2-a e^2}+\frac {c d e x}{c d^2-a e^2}\right )^{m+p} \, dx\\ &=\frac {(a e+c d x) (d+e x)^m \left (\frac {c d (d+e x)}{c d^2-a e^2}\right )^{-m-p} \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^p \, _2F_1\left (-m-p,1+p;2+p;-\frac {e (a e+c d x)}{c d^2-a e^2}\right )}{c d (1+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 107, normalized size = 1.07 \[ \frac {(d+e x)^{m-1} ((d+e x) (a e+c d x))^{p+1} \left (\frac {c d (d+e x)}{c d^2-a e^2}\right )^{-m-p} \, _2F_1\left (-m-p,p+1;p+2;\frac {e (a e+c d x)}{a e^2-c d^2}\right )}{c d (p+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^m*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^p,x]

[Out]

((d + e*x)^(-1 + m)*((c*d*(d + e*x))/(c*d^2 - a*e^2))^(-m - p)*((a*e + c*d*x)*(d + e*x))^(1 + p)*Hypergeometri
c2F1[-m - p, 1 + p, 2 + p, (e*(a*e + c*d*x))/(-(c*d^2) + a*e^2)])/(c*d*(1 + p))

________________________________________________________________________________________

fricas [F]  time = 0.89, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{p} {\left (e x + d\right )}^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^p,x, algorithm="fricas")

[Out]

integral((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^p*(e*x + d)^m, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{p} {\left (e x + d\right )}^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^p,x, algorithm="giac")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^p*(e*x + d)^m, x)

________________________________________________________________________________________

maple [F]  time = 1.58, size = 0, normalized size = 0.00 \[ \int \left (c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x \right )^{p} \left (e x +d \right )^{m}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^m*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^p,x)

[Out]

int((e*x+d)^m*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^p,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{p} {\left (e x + d\right )}^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^m*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^p,x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^p*(e*x + d)^m, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (d+e\,x\right )}^m\,{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^p \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^m*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^p,x)

[Out]

int((d + e*x)^m*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^p, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**m*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**p,x)

[Out]

Timed out

________________________________________________________________________________________